Correcting noisy ratings in collaborative recommender systems
نویسندگان
چکیده
Recommender systems help users to find information that best fits their preferences and needs in an overloaded search space. Most recommender systems research has been focused on the accuracy improvement of recommendation algorithms. Despite this, recently new trends in recommender systems have become important research topics such as, cold start, group recommendations, context-aware recommendations, and natural noise. The concept of natural noise is related to the study and management of inconsistencies in datasets of users’ preferences used in recommender systems. In this paper a novel approach is proposed to detect and correct those inconsistent ratings that might bias recommendations, whose main advantage regarding previous proposals is that it uses only the current ratings in the dataset without needing any additional information. To do so, this proposal detects noisy ratings by characterizing items and users by their profiles, and then a strategy to fix these noisy ratings is carried out to increase the accuracy of such recommender systems. Finally a case study is developed to show the advantage of this proposal to deal with natural noise regarding previous methodologies. 2014 Elsevier B.V. All rights reserved.
منابع مشابه
یک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملEffect of Rating Time for Cold Start Problem in Collaborative Filtering
Cold start is one of the main challenges in recommender systems. Solving sparsechallenge of cold start users is hard. More cold start users and items are new. Sine many general methods for recommender systems has over fittingon cold start users and items, so recommendation to new users and items is important and hard duty. In this work to overcome sparse problem, we present a new method for rec...
متن کاملA Novel Trust Computation Method Based on User Ratings to Improve the Recommendation
Today, the trust has turned into one of the most beneficial solutions to improve recommender systems, especially in the collaborative filtering method. However, trust statements suffer from a number of shortcomings, including the trust statements sparsity, users' inability to express explicit trust for other users in most of the existing applications, etc. Thus to overcome these problems, this ...
متن کاملA NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملMerging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems
In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Knowl.-Based Syst.
دوره 76 شماره
صفحات -
تاریخ انتشار 2015